Iterative reconstruction for quantitative computed tomography analysis of emphysema: consistent results using different tube currents
نویسندگان
چکیده
PURPOSE To assess the advantages of iterative reconstruction for quantitative computed tomography (CT) analysis of pulmonary emphysema. MATERIALS AND METHODS Twenty-two patients with pulmonary emphysema underwent chest CT imaging using identical scanners with three different tube currents: 240, 120, and 60 mA. Scan data were converted to CT images using Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) and a conventional filtered-back projection mode. Thus, six scans with and without AIDR3D were generated per patient. All other scanning and reconstruction settings were fixed. The percent low attenuation area (LAA%; < -950 Hounsfield units) and the lung density 15th percentile were automatically measured using a commercial workstation. Comparisons of LAA% and 15th percentile results between scans with and without using AIDR3D were made by Wilcoxon signed-rank tests. Associations between body weight and measurement errors among these scans were evaluated by Spearman rank correlation analysis. RESULTS Overall, scan series without AIDR3D had higher LAA% and lower 15th percentile values than those with AIDR3D at each tube current (P<0.0001). For scan series without AIDR3D, lower tube currents resulted in higher LAA% values and lower 15th percentiles. The extent of emphysema was significantly different between each pair among scans when not using AIDR3D (LAA%, P<0.0001; 15th percentile, P<0.01), but was not significantly different between each pair among scans when using AIDR3D. On scans without using AIDR3D, measurement errors between different tube current settings were significantly correlated with patients' body weights (P<0.05), whereas these errors between scans when using AIDR3D were insignificantly or minimally correlated with body weight. CONCLUSION The extent of emphysema was more consistent across different tube currents when CT scans were converted to CT images using AIDR3D than using a conventional filtered-back projection method.
منابع مشابه
Comparing IDREAM as an Iterative Reconstruction Algorithm against In Filtered Back Projection in Computed Tomography
Introduction: Recent studies of Computed Tomography (CT) conducted on patient dose reduction have recommended using an iterative reconstruction algorithm and mA (mili-Ampere) dose modulation. The current study aimed to evaluate Iterative Dose Reduction Algorithm (IDREAM) as an iterative reconstruction algorithm. Material and Methods: Two CT p...
متن کاملX-Ray Dose Reduction in Abdominal Computed Tomography Using Advanced Iterative Reconstruction Algorithms
OBJECTIVE This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR) and model-based iterative reconstruction (MBIR) algorithms in reducing computed tomography (CT) radiation dosages in abdominal imaging. METHODS CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the fi...
متن کاملFast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کاملRadiation dose reduction for CT lung cancer screening using ASIR and MBIR: a phantom study
The purpose of this study was to reduce the radiation dosage associated with computed tomography (CT) lung cancer screening while maintaining overall diagnostic image quality and definition of ground-glass opacities (GGOs). A lung screening phantom and a multipurpose chest phantom were used to quantitatively assess the performance of two iterative image reconstruction algorithms (adaptive stati...
متن کاملApplication of Different methods for Reducing Radiation Dose to Breast during MDCT
The increased use of computed tomography (CT) and its high radiation dose have led to great concerns about its potential for radiation induced cancer risks. Breast is a radiosensitive tissue based on tissue weighting factors assigned by the International Commission on Radiological Protection (ICRP). Moreover, the dose is maximal on the surface of the patient. Therefore, strategies should be tak...
متن کامل